Introduction

Nasopharyngeal carcinoma (NPC) is a common cancer in ethnic Chinese populations, and radiation therapy is by far the most effective modality of treatment. \[1,2\] Traditionally, external beam irradiation is delivered via two-dimensional radiotherapy to the nasopharynx and neck. The radiation, however, frequently damages adjacent tissues from the skull base to the neck, and leads to various adverse effects. \[3\] Frequent otologic complications include otitis media, sensorineural hearing loss, vestibular deficits, and temporal bone osteoradionecrosis. \[4,7\] Among them, post-irradiation otitis media with effusion (OME) is the most common middle ear complication, and its development is believed to attribute to eustachian tube dysfunction caused by tumor destruction and/or radiation insults. \[4,8\] To decrease radiation dose in the adjacent tissues and reduce occurrence of adverse effects, modern planning schemes, such as intensity-modulated radiotherapy (IMRT), have been introduced since 1990s. \[9\] Although studies demonstrated NPC patients treated by IMRT had fewer therapeutic side effects compared with those treated by conventional radiotherapy or three-dimensional conformal radiotherapy, \[10,11\] our clinical observation showed that the occurrence of post-irradiation OME can not be reduced by the use of IMRT. The finding suggests that the etiology and pathogenesis of OME in NPC patients following radiotherapy are still not fully understood. Since the occurrence of OME can also be enhanced by inflammatory reactions of the nasopharynx and paranasal sinuses both in individuals with or without radiotherapy, \[12\] ascending infection of bacteria may be implicated in the pathogenesis of OME in irradiated NPC patients. The literature, however, lacks data on the microbiology of post-irradiation OME in NPC patients. Therefore, the purpose of this study was to examine the role of bacteria in the development of OME in NPC patients following radiotherapy.

Objective: To examine the role of bacteria in the development of otitis media with effusion (OME) in nasopharyngeal carcinoma (NPC) patients following radiotherapy.

Materials and Methods: The study is comprised of a single cohort of NPC patients between January 2002 and December 2007. When an OME was diagnosed at follow-up, a tympanocentesis was performed to collect middle ear effusions for culture.

Results: Eighty eight NPC patients with a mean age of 45.8 years were enrolled in the study. Overall, 25 (28%) of these patients had OME and 22 underwent tympanocentesis and had documentation of ear effusion culture. Of the 22 samples, 8 had growth of one organism. Of these culture-positive ear effusions, 5 had growth of Staphylococcus aureus and 3 had coagulase-negative Staphylococcus.

Conclusions: Bacteria infections, which most likely ascend from the nasopharynx, may be implicated in the pathogenesis of post-irradiation OME in some NPC patients.
Materials and Methods

Patients

A single cohort of consecutive NPC patients who had biopsy-proved disease and underwent radiotherapy at the Chung Shan Medical University Hospital between January 2002 and December 2007 was enrolled in the study. Patients who did not complete the full course of radiotherapy and who showed evidence of local recurrence at follow-up were excluded from the study. OME occurred in the first year after treatment was considered early effect of radiotherapy and was not included in the analysis. In addition, patients who had acute upper respiratory infections at the time of tympanocentesis were also excluded from the study.

Institutional Review Board approval was obtained for a retrospective review of each patient’s clinical chart with the extraction of demographic, clinical, and microbiological data.

External beam radiotherapy

The IMRT was delivered to these patients via seven fixed-gantry angles with a linear accelerator. Plans of IMRT were prepared using the Helio inverse planning system. Gross target volume (GTV), clinical target volume (CTV), and planning target volume (PTV) were defined according to the International Commission on Radiation Units and Measurements, ICRU report 62 (Cox 1995), and were measured for each patient. The goal of radiotherapy was to deliver a minimum dose of 70 Gy to the GTV and 55–60 Gy to the CTV, with the respective fraction sizes of 2.12 and 1.7–1.8 Gy.

Collection of middle ear fluid

All patients underwent otoscopic examinations before radiotherapy and at scheduled follow-up after radiotherapy. If otoscopic examination revealed any abnormalities of the middle ear, a conventional audiometry and tympanometry were conducted. Once an OME was diagnosed, tympanocentesis was performed to relieve symptoms and to collect the middle ear effusions for culture. Briefly, the external auditory canal was cleared of cerumen and disinfected with povidone-iodine solution. Under microscopic guide, the tympanic membrane was tapped with a sterile needle attached to a 1.0-ml syringe and the effusion was aspirated. Collected middle ear samples were immediately streaked on a culture and transport system (Copan Italia, Brescia, Italy), and the specimen was delivered to the microbiology laboratory for aerobic and anaerobic bacteria within 10 minutes of collection.

The culture samplings were performed with the patients off antibiotics for at least 2 weeks. Only one culture was accepted for each patient, although some patients had multiple aspirations over the time period.

Laboratory methods

In the microbiology laboratory, aerobic specimens were plated on blood agar plate, eosin methylene blue agar, and chocolate agar, cultured for 24 hours at 35°C in an incubator containing 5% CO₂. Anaerobic cultivation was performed using a BAP agar and incubated anaerobically (10% CO₂ + 5%H₂ + 85%N₂). The plates were examined for growth of bacterial colonies at 48 hours of incubation. Organisms that grew on culture were identified by standard techniques and reported semi-quantitatively as follows: growth at initial inoculum, first quadrant, “rare”; growth in the first and second quadrants, “light”; growth into third quadrant, “moderate”; and growth into fourth quadrant, “heavy”. Cultures that were devoid of bacterial growth after 48 hours were classified as negative. Because coagulase-negative Staphylococcus normally reside in the external ear and are nonpathogenic, recoveries of the organism were considered contamination and the cultures were classified as negative.\(^{[13]}\)

Results

Between January 2002 and December 2007, 88 NPC patients (69 males and 19 females) with a mean age of 45.8 years (range, 19 to 78 years) were included in the study. According to the American Joint Committee on Cancer (AJCC) staging system, 20 patients (23%) were in T1, 42 patients (48%) in T2, 12 patients (14%) in T3, and 14 patients (16%) in T4 lesions. All patients received otoscopic examinations for assessment of middle ear complications at the scheduled follow-up. Overall, 25 (28%) patients had OME and 7 (8%) had perforated tympanic membrane. The remaining patients were free of middle ear abnormalities. Among the 25 patients who had unilateral or bilateral OME, 22 underwent tympanocentesis and had documentation of ear effusion culture. The demographic, clinical, and culture results for these patients were shown in Table 1.
Of the 22 samples, 8 had growth of one organism while 14 did not show any growth. Of the 8 culture-positive ear effusions, 5 had growth of Staphylococcus aureus and 3 had coagulase-negative Staphylococcus. Other organisms commonly isolated from the OME in normal individuals, such as Haemophilus influenzae and Streptococcus pneumoniae, were not identified in this analysis. Since recoveries of coagulase-negative Staphylococcus were considered contamination, the culture rate of potential pathogens was 23% (5/22).

Discussion

Otitis media with effusion is one of the most common otologic complications in irradiated NPC patients, with an occurrence rate in the range of 9% to 26%. The current study demonstrated that 28% of NPC patients treated by IMRT developed recurrent OME, confirming previous observation that the occurrence of post-irradiation OME can not be further reduced by the use of IMRT. In general, the pathogenesis of post-irradiation OME in NPC patients is considered to be an impaired eustachian tube function due to tumor destruction prior treatment and/or radiation insults of the tube. Young et al. also found that tubal patency and clearance function of the eustachian tube deteriorated if irradiation dosage increased. To decrease dosage of the radiation in the adjoining structures and reduce adverse effects of radiotherapy, three-dimensional planning schemes have been utilized more than one decade. To reduce irradiation in the temporal bone by modern radiotherapy techniques was evidenced by the electromicroscopic findings of the middle ear mucosa (Fig. 1), as well as clinical studies which demonstrated NPC patients treated by IMRT had lower opportunities developing common otologic complications. Our study, however, failed to show a decreased incidence of OME in NPC patients treated by IMRT, suggesting that factors other than eustachian tube dysfunction might also be involved in the development of post-irradiation OME.

Table 1. Demographic And Culture Results

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age (year)</th>
<th>Sex</th>
<th>T staging</th>
<th>Postirradiation (year)</th>
<th>Laterality of OME</th>
<th>Organism recovered from middle ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43</td>
<td>F</td>
<td>T2</td>
<td>2</td>
<td>Right</td>
<td>Staphylococcus aureus (light)</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>F</td>
<td>T2</td>
<td>2</td>
<td>Bilateral</td>
<td>(-)</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>M</td>
<td>T2</td>
<td>6</td>
<td>Right</td>
<td>Coagulase-negative Staphylococcus (rare)</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>F</td>
<td>T2</td>
<td>2</td>
<td>Bilateral</td>
<td>Staphylococcus aureus (rare)</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>M</td>
<td>T4</td>
<td>1</td>
<td>Right</td>
<td>(-)</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>M</td>
<td>T2</td>
<td>2</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>M</td>
<td>T2</td>
<td>5</td>
<td>Right</td>
<td>Staphylococcus aureus (rare)</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>F</td>
<td>T2</td>
<td>1</td>
<td>Right</td>
<td>(-)</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>M</td>
<td>T2</td>
<td>2</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>M</td>
<td>T3</td>
<td>1</td>
<td>Bilateral</td>
<td>(-)</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>M</td>
<td>T2</td>
<td>5</td>
<td>Left</td>
<td>Staphylococcus aureus (light)</td>
</tr>
<tr>
<td>12</td>
<td>47</td>
<td>F</td>
<td>T2</td>
<td>1</td>
<td>Bilateral</td>
<td>Coagulase-negative Staphylococcus (rare)</td>
</tr>
<tr>
<td>13</td>
<td>36</td>
<td>M</td>
<td>T1</td>
<td>5</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>14</td>
<td>41</td>
<td>M</td>
<td>T2</td>
<td>3</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>F</td>
<td>T1</td>
<td>3</td>
<td>Bilateral</td>
<td>(-)</td>
</tr>
<tr>
<td>16</td>
<td>43</td>
<td>M</td>
<td>T2</td>
<td>6</td>
<td>Left</td>
<td>Staphylococcus aureus (rare)</td>
</tr>
<tr>
<td>17</td>
<td>61</td>
<td>M</td>
<td>T2</td>
<td>5</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>18</td>
<td>59</td>
<td>M</td>
<td>T1</td>
<td>7</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>19</td>
<td>45</td>
<td>M</td>
<td>T4</td>
<td>1</td>
<td>Right</td>
<td>Coagulase-negative Staphylococcus (rare)</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>M</td>
<td>T4</td>
<td>1</td>
<td>Left</td>
<td>(-)</td>
</tr>
<tr>
<td>21</td>
<td>53</td>
<td>M</td>
<td>T2</td>
<td>3</td>
<td>Bilateral</td>
<td>(-)</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>F</td>
<td>T1</td>
<td>7</td>
<td>Left</td>
<td>(-)</td>
</tr>
</tbody>
</table>

\text{F} = \text{female; M} = \text{male; (-) = no growth of aerobic and anaerobic bacteria}

246
The literature lacks analysis on the microbiology of post-irradiation OME in NPC patients, except one study described limited data on one dozen of effusion ears.[16] To the best of our knowledge, the current study is the only study designed to examine the bacteriological profile of post-irradiation OME in NPC patients. Moreover, our analysis examined the issue in patients treated by IMRT, a therapeutic modality supposedly delivering less radiation to the middle ear. Our data revealed that more than 75% of the samples obtained from post-irradiation OME in NPC patients were sterile, suggesting that impaired eustachian tube indeed is the main mechanism underlying genesis of post-irradiation OME. There were, however, roughly one quarter of middle ear specimens had isolation of potential pathogens. Since rhinosinusitis and nasopharyngitis are common adverse effects in irradiated NPC patients,[17,18] ascending infections of the bacteria from the sinonasal mucosa to the middle ear can be the scenario for development of post-irradiation OME in these patients.

Our data also revealed that all of the pathogens isolated from post-irradiation OME are Staphylococcus aureus, indicating this organism is the major bacteria involved in the ascending infection in irradiated NPC patients. This finding is also consistent with results of previous studies which demonstrated Staphylococcus aureus is among the most common organism responsible for rhinosinusitis in irradiated NPC patients.[19,20]

Because post-irradiation OME can cause hearing impairment, aural fullness, tinnitus, and even dizziness, the problem should be handled to improve the quality of life in NPC survivors. Controversy, however, exists as to whether to perform insertion of ventilating tube or to adopt repeated tympanocentesis. Xu et al. recently compared 3 methods of treatment and suggested a step-wise approach for the management of NPC patients with post-irradiation OME.[21] However, since both previous and our studies demonstrated that ascending infections may cause or exacerbate post-irradiation OME, a simultaneous control of sinonasal inflammations is also essential in addition to draining and ventilating the middle ear cavity. In general, adequate antimicrobial therapy and daily nasal irrigation with saline are both beneficial in the managements of sinonasal inflammations following radiotherapy.[18]

Limitation to the current study was the low growth density of ear effusion cultures. It may represent recovery of commenal flora in the middle ear instead of identification of organisms responsible for post-irradiation OME. A recent study using modern microbiological techniques, however, revealed that the middle ear cavity is a normally sterile site,[22] suggesting that any bacterial growth out of middle ear effusions is noteworthy in the pathogenesis of ear inflammations.

Conclusion
Although dysfunctions of the eustachian tube play a major role in the development of post-irradiation OME in NPC patients, bacterial infections, probably
ascending from the sinonasal mucosa, may also be implicated in the pathogenesis. Therefore, an adequate treatment of the post-irradiation rhinosinusitis is important in the management of OME in NPC patients following radiotherapy.

Acknowledgement

Our sincere thanks to Prof. Ko-Kaung Liao for assisting the electromicroscopic study.

References

