Case Report

Venous Engorgement as a Cause of Facial Canal Enlargement

Minbum Kim, Dong-Wook Lim, Ha Young Lee, Kyu-Sung Kim

Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, South Korea (MK, DWL, KSK)
Department of Radiology, Inha University College of Medicine, South Korea (HYL)

INTRODUCTION

Facial canal enlargement on temporal bone imaging is usually a critical sign that alarms otologists, suggesting congenital cholesteatoma [1], meningocele [2], or facial nerve neoplasms, such as schwannomas, neurofibromas, meningioma, paragangliomas, perineural spread of parotid malignancies, and other metastatic lesions [3-5]. However, normal variants of vascular anatomy can also cause facial canal enlargement, as was shown in a recent case report of fallopian canal enlargement due to a prominent vein in the temporal bone [6]. We herein present a case of facial canal enlargement due to the presence of a venous engorgement in the facial canal with imaging and surgical findings.

CASE PRESENTATION

A 50-year-old male, who had a history of previous simple mastoidectomy with ossiculoplasty in the left ear, was referred to our clinic due to recurring otorrhea. Otoscopic exam showed granulation tissue and a central perforation of the tympanic membrane. The patient initially showed no symptoms of facial palsy or dizziness. His pure tone audiogram demonstrated partial hearing loss on the left side with an air-bone gap of 34 dB and normal hearing on the right side.

Temporal bone computed tomography (CT), performed in the axial plane with coronal reconstruction, showed a soft tissue lesion filling the left tympanic and mastoid cavity, suggesting recurrent otomastoiditis. In addition, it also showed diffuse smooth enlargement of the bony facial canal from the geniculate ganglion to the stylomastoid foramen (Figure 1a, b). The contralateral facial canal was normal in size.

For further evaluation of the facial nerve lesion, such as a schwannoma and other malignancies, temporal magnetic resonance imaging (MR) was performed. On the gadolinium-enhanced T1-weighted images, diffuse and strong enhancement was observed in the left facial canal, along with a thin tubular filling defect of the normal peripheral facial nerve, which suggested a venous structure rather than a tumor. Soft tissue lesions filling the left tympanic and mastoid cavity were hyperintense on both T1- and T2-weighted images without diffusion restriction and showed mild peripheral enhancement on the enhanced images, which suggested chronic otomastoiditis (Figures 1c, d).

Under the diagnosis of chronic mastoiditis with the possibility of anatomical variation of the facial canal, canal wall down mastoidectomy was performed by retroauricular approach. Granulation tissue in the middle ear and mastoid cavity was removed. The facial nerve canal wall was thinned from the second genu to the geniculate ganglion. The facial canal had a dark blue appearance and tended to bleed easily, suggesting a venous structure (Figure 2). Cholesteatoma or any kind of neoplasm was not observed. After the surgery, there was no sign of facial paralysis over 3 years of follow-up.

Corresponding Address:
Kyu-Sung Kim, Department of Otorhinolaryngology-Head and Neck Surgery of Inha University Hospital Shinheung-Dong 3Ga, Jung-Gu, Incheon, South Korea
Phone: +82-32-890-3620; Fax: +82-32-890-3580; E-mail: stedman@inha.ac.kr
Submitted: 23.12.2013 Accepted: 04.04.2014
Copyright 2014 © The Mediterranean Society of Otology and Audiology
This case was approved from the institutional review board (IRB) committee of Inha University Hospital, and informed consent was obtained before chart review (IRB number: 13-0945).

DISCUSSION

Facial canal enlargement on temporal bone imaging can be seen in various conditions. The normal diameter of the fallopian canal in the temporal bone has been reported to be 0.9 to 2 mm [7,8]. From a congenital anomaly to neoplasms, many causes should be considered for the correct diagnosis. Similarly, there are many causes of facial canal enhancement on gadolinium-enhanced MR images. Enhancement of the facial nerve represents breakdown of the blood-peripheral nerve barrier or other pathological conditions, including Bell’s palsy, infection, radiation, cholesteatoma, trauma, and neoplasms [9]. In addition, it is possible for the normal facial nerve to show mild enhancement of the labyrinthine segment, geniculate ganglion, and proximal tympanic segments, presumably due to the presence of a circumneural venous plexus in these segments [9,10]. Venous congestion was also reported as a cause of facial nerve enhancement, due to its relatively well-developed anastomosis, in a human temporal bone study [11].

Arteries and their venous counterparts are different according to the segment of the facial nerve. The labyrinthine segments are supplied by the internal auditory artery, which arises from the anterior inferior cerebellar artery. The middle meningeal artery via the petrosal artery supplies the perigeniculate area, and the stylomastoid artery supplies the tympanic and mastoid segments. The superior tympanic artery occasionally extends into the facial canal, and the stylomastoid artery also anastomoses with the petrosal artery at the tympanic segment of the facial nerve. Similarly, accompanying veins drain each segment of the facial nerve. The venous blood from the geniculate ganglion and tympanic segment drains into the middle meningeal vein [1,12,13].

In this case, venous engorgement was a cause of facial canal enlargement. Although venous causes of facial canal enlargement have not been previously described in live patients, this possibility should be considered so that otologists will not mistakenly perform excessive procedures, such as facial canal exploration and even catastrophic biopsy. In addition, information regarding the presence of venous congestion can be helpful in avoiding intraoperative bleeding and facial nerve injury during otologic surgery.

Informed Consent: Written informed consent was obtained from the patient who participated in this case.
Peer-review: Externally peer-reviewed.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: This case was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No.2013R1A2A2A04014796).

REFERENCES