EAONO position statement on Vestibular Schwannoma: Imaging Assessment Question: How should growth of Vestibular Schwannoma be defined?

Romain Kania, Benjamin Vérillaud, Domitille Camous, Charlotte Hautefort, Thomas Somers, Jérôme Waterval, Sébastien Froelich, Philippe Herman

Department of Otorhinolaryngology, Head & Neck Surgery, APHP, Paris Sorbonne University, Paris, France (RK, BV, DC, CH, PH)
European Institute for ORL Antwerp Skull Base Center, Sint-Augustinus Hospital, Antwerp, Belgium (TS)
Department of Otorhinolaryngology, Radboud University Medical Center, Netherlands (JW)
Department of Neurosurgery, APHP, Paris Sorbonne University, Paris, France (SF)

The relevance of defining the growth of vestibular schwannoma (VS) is that any significant VS growth may impact treatment strategy. A conservative treatment strategy is often proposed as a primary treatment option in the management of VS. Several authors have demonstrated that a significant proportion of VSs do not grow, and those that do, usually grow slowly. Surgical and/or radiosurgical treatment options may be offered to the patient according to the VS growth. Therefore, defining the VS growth is a determinant in managing treatment strategies. A comprehensive literature search was performed to examine the definition of tumor growth for VS. The literature review was conducted using PubMed and Embase databases dated back to 20 years (1995–2015) and was updated until February 2015. VS growth should be measured on contrast-enhanced T1-weighted images. Although the overall quality of the present studies is low, all highlight a significant VS growth of >2 mm, and/or 1.2 cm³, and/or 20% change in volume, and/or the square of the product of the 2 orthogonal diameters. We suggest that VS growth should instead change management strategies when a 3-mm increase in diameter on two consecutive MRI scans are performed 1 year apart.

KEYWORDS: Vestibular Schwannoma, growth rate, natural history, imaging assessment

MATERIALS and METHODS
As part of the Vestibular Schwannoma Project conducted by the European Academy of Otology & Neuro-Otology (EAONO), a comprehensive literature search was conducted to examine the definition of tumor growth for vestibular schwannoma (VS).

The literature review was conducted on the databases Pubmed and Embase dated back to 20 years (1995–2015) and was updated until February 2015.

A PubMed search using the key words “Natural history,” “vestibular schwannoma,” “acoustic neuroma,” and “tumor growth” alone and in combination was performed. This query identified 680 papers in the last 20 years, between 1995 and 2015.

Search syntax

Inclusion and exclusion criteria

a) Article titles and abstracts were screened according to the following criteria:
b) Clinical articles reporting original data, thereby excluding reviews and case reports
 c) Data only from adult patients

Corresponding Address: Romain Kania E-mail: romain.kania@gmail.com
Submitted: 08.03.2018 • Accepted: 12.03.2018
©Copyright 2018 by The European Academy of Otology and Neurotology and The Politzer Society - Available online at www.advancedotology.org
After the initial search, 763 articles were obtained, but 721 did not meet one or more of the inclusion criteria and hence were discarded. The remaining 41 articles were reviewed for methodology and scored using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system [1].

Literature review

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>YEAR</th>
<th>DESIGN</th>
<th>n</th>
<th>METHOD</th>
<th>VS GROWTH RATE</th>
<th>VS GROWTH CHANGING STRATEGY</th>
<th>GRADE Quality of evidence</th>
<th>GRADE Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jethanamest et al. [2]</td>
<td>2015</td>
<td>Case series</td>
<td>94</td>
<td>2</td>
<td>1 mm/year</td>
<td>1.14 mm/year</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Hougaard et al. [3]</td>
<td>2014</td>
<td>Case series</td>
<td>72</td>
<td>2</td>
<td>1-2 mm/year</td>
<td>3 mm/year</td>
<td>Moderate</td>
<td>Weak 1</td>
</tr>
<tr>
<td>Tang et al. [5]</td>
<td>2014</td>
<td>Case series</td>
<td>88</td>
<td>2,3,4</td>
<td>91.4 mm for 1D, 7 mm for 2D, and 133.3 mm for 3D</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Niu et al. [6]</td>
<td>2014</td>
<td>Case series</td>
<td>58</td>
<td>4</td>
<td>20%</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Nikopoulos et al. [7]</td>
<td>2013</td>
<td>Meta-analysis</td>
<td></td>
<td></td>
<td>1-2 mm/year</td>
<td>Moderate</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>González-Orús Álvarez-Morujo et al. [8]</td>
<td>2013</td>
<td>Case series</td>
<td>73</td>
<td>2</td>
<td>2 mm/year</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Stangerup and Caye-Thomasen [9]</td>
<td>2012</td>
<td>Case series prospective</td>
<td>2500</td>
<td>1</td>
<td>3 mm/year</td>
<td>Moderate</td>
<td>Weak 2</td>
<td></td>
</tr>
<tr>
<td>Varughese et al. [10]</td>
<td>2012</td>
<td>Case series prospective</td>
<td>178</td>
<td>4</td>
<td>1 mm/year</td>
<td>5.22 years VDT</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Moffat et al. [11]</td>
<td>2012</td>
<td>Case series</td>
<td>381</td>
<td>2</td>
<td>2 mm/year</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Kim et al. [12]</td>
<td>2012</td>
<td>Case series</td>
<td>60</td>
<td>4</td>
<td>20%</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Breivik et al. [13]</td>
<td>2012</td>
<td>Case series</td>
<td>193</td>
<td>1</td>
<td>>2 mm/year</td>
<td>Moderate</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Sughrue et al. [14]</td>
<td>2011</td>
<td>Case series prospective</td>
<td>59</td>
<td>2</td>
<td>2.5 mm/year</td>
<td>Low</td>
<td>Weak 3</td>
<td></td>
</tr>
<tr>
<td>Eljamel et al. [15]</td>
<td>2011</td>
<td>Case series</td>
<td>53</td>
<td>1,3,2</td>
<td>2 mm/year</td>
<td>Very Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Varughese et al. [16]</td>
<td>2010</td>
<td>Case series</td>
<td>139</td>
<td>3</td>
<td>1 mm/year</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Agrawal et al. [17]</td>
<td>2010</td>
<td>Case series</td>
<td>180</td>
<td>1,4</td>
<td>1 mm/year</td>
<td>Moderate</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Suryanarayanan et al. [18]</td>
<td>2010</td>
<td>Case series</td>
<td>286</td>
<td>1.1 (range 0 to 15/y)</td>
<td>Low</td>
<td>Weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitehouse, et al. [19]</td>
<td>2010</td>
<td>Case series</td>
<td>88</td>
<td>2</td>
<td>1.24 (range -4.7 to 14 mm/y)</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Bakkouri et al. [20]</td>
<td>2009</td>
<td>Case series</td>
<td>325</td>
<td>1</td>
<td>1-2 mm/year</td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Artz et al. [21]</td>
<td>2009</td>
<td>Case series</td>
<td>234</td>
<td>2</td>
<td></td>
<td>Low</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Van de Landergerg et al. [22]</td>
<td>2008</td>
<td>Case series</td>
<td>68</td>
<td>4</td>
<td>19.7% volume change</td>
<td>Moderate</td>
<td>Weak</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

The question: How should growth of VS be defined?

INTRODUCTION

The relevance of defining the growth of VS is that any significant VS growth may impact the treatment strategy. A conservative treatment strategy is often proposed as a primary treatment option in the management of VS. Several authors have demonstrated that a significant proportion of VS do not grow, and those that do, usually grow slowly. Surgical and/or radiosurgical treatment options may be offered to the patient according to VS growth. Therefore, the definition of VS growth is a determinant in managing treatment strategies.

Evidence

The reviewed articles selected to find an answer how should VS growth be defined comprised 2 meta-analysis, 6 cohort studies, and 33 case series. The mean number of patients included for the clinical series was 215 (50-2500).
The mean VS growth was calculated according to the maximal diameter in the CPA, maximal total diameter, mean of 2 measurements and volume changes in 7, 14, 7, and 8 studies, respectively. Once the VS reaches 2 cm in intracranial diameter, it is likely to continue growing.

The mean VS growth was 1.75±0.83 mm/year but ranged from −13–+18 mm/year. In 3 studies reporting volume change measurements, 20% of volume change was considered to be significant growth. A minimum of 2 mm/year of VS growth was considered to be significant for changing management strategies. When considering VS

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>YEAR</th>
<th>STUDY DESIGN</th>
<th>n</th>
<th>METHOD</th>
<th>VS GROWTH RATE mm/year</th>
<th>VS GROWTH CHANGING STRATEGY mm/year</th>
<th>GRADE Quality of evidence</th>
<th>GRADE Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferri et al. [23]</td>
<td>2008</td>
<td>Cohort study</td>
<td>123</td>
<td>2</td>
<td>1.2</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Stangerup et al. [24]</td>
<td>2006</td>
<td>Case series prospective</td>
<td>552</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Moderate</td>
<td>Weak</td>
</tr>
<tr>
<td>Battaglia et al. [25]</td>
<td>2006</td>
<td>Case series</td>
<td>111</td>
<td>3</td>
<td>0.7±1.4</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Yoshimoto [26]</td>
<td>2005</td>
<td>Meta-analysis</td>
<td>1340</td>
<td></td>
<td>1.2</td>
<td></td>
<td>Moderate</td>
<td>Weak</td>
</tr>
<tr>
<td>Flint, et al. [27]</td>
<td>2005</td>
<td>Case series</td>
<td>100</td>
<td></td>
<td>2.7</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Hearnwadjer et al. [28]</td>
<td>2005</td>
<td>Case series</td>
<td>50</td>
<td>4</td>
<td>109 mm3/y</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Bozorg Grayeli et al. [29]</td>
<td>2005</td>
<td>Case series</td>
<td>111</td>
<td>2</td>
<td>1.1±0.21</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Raut et al. [30]</td>
<td>2004</td>
<td>Case series prospective</td>
<td>72</td>
<td>3</td>
<td>remark 4</td>
<td>1</td>
<td>3.1</td>
<td>Low</td>
</tr>
<tr>
<td>Quaranta et al. [31]</td>
<td>2003</td>
<td>Case series</td>
<td>122</td>
<td></td>
<td>1.09 (range -6.32 to 10 mm/y)</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Tanaka et al. [32] remark 6</td>
<td>2002</td>
<td>Case series</td>
<td>52</td>
<td>1</td>
<td></td>
<td></td>
<td>Very low</td>
<td>Weak</td>
</tr>
<tr>
<td>Nutik et al. [33]</td>
<td>2001</td>
<td>Case series</td>
<td>75</td>
<td>1</td>
<td>3.1±2.8</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Hoistad et al. [34]</td>
<td>2001</td>
<td>Case series</td>
<td>102</td>
<td>2</td>
<td>2.17</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Rosenberg [35]</td>
<td>2000</td>
<td>Case series</td>
<td>80</td>
<td>3</td>
<td>0.91</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Mirz et al. [36]</td>
<td>2000</td>
<td>Cohort study</td>
<td>64</td>
<td></td>
<td>2.3</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Walsh et al. [37]</td>
<td>2000</td>
<td>Case series</td>
<td>72</td>
<td>3</td>
<td>1.16 (range -0.75 to 9.65/y)</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Shin et al. [38]</td>
<td>2000</td>
<td>Case series</td>
<td>87</td>
<td>3</td>
<td>1.52 (range -13 to 18 mm/y)</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Tschudi et al. [39]</td>
<td>2000</td>
<td>Case series</td>
<td>74</td>
<td></td>
<td>2.2 mean first year 2.7</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Fucci et al. [40]</td>
<td>1999</td>
<td>Case series</td>
<td>119</td>
<td>2</td>
<td>1.2±3.1</td>
<td></td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Deen et al. [41]</td>
<td>1996</td>
<td>Case series</td>
<td>68</td>
<td>3</td>
<td>0.72</td>
<td>3</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Wiet et al. [42]</td>
<td>1995</td>
<td>Case series</td>
<td>53</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td>Very Low</td>
<td>Weak</td>
</tr>
</tbody>
</table>

1 Extrameatal diameter
2 Largest tumor diameter including intracanalicular portion
3 Two-dimensional data, i.e., larger diameter according to AAO-HNS guidelines 1995
4 Volumetric measurements using three-dimensional reconstruction
VS: vestibular schwannoma; VDT: volume doubling time; AAO-HNS: American Academy of Otolaryngology-Head and Neck Surgery
- Volume measurements estimated by the slice area method. Tumor areas were measured in each slice of gadolinium-enhanced magnetic resonance imaging (MRI) scans throughout the entire tumor. Each slice volume was estimated by multiplying the slice area by the slice interval, and the tumor volume was calculated by summarizing all slices.
- Volume measurement: $A \times B \times C \times 2$, where A is the anteroposterior diameter, B is the medial-to-lateral diameter, and C is the vertical diameter. Growth in the first year was a strong predictor of future growth, and a VS volume > 1.2 cm3 at presentation was also a predictor of future growth.
- Remark 1: The best way to measure VS needs further investigation; measurements ought to be standardized and clearly defined, and the current growth criterion ≥1-2 mm needs to be redefined. We suggest that VS growth should instead be defined as a 3-mm linear increase in diameter on two consecutive MRI scans one year apart.
- Remark 2: The present criterion for growth of a purely intrameatal tumor was the growth to an extrameatal extension tumor.
- Remark 3: 2.5 mm/year is a clear indication for treatment of patients who wish to maintain hearing.
- Remark 4: The maximum diameter of the CPA portion is the simplest method, and it is appropriate to represent the tumor volume in unselected tumors. The maximum diameter or axis diameter with the internal auditory canal portion are better when only small tumors (<0.5 cm3), i.e., tumors with the maximum CPA≤1 cm.
- Remark 5: Contrast-enhanced T1-weighted volume measurements showed better interobserver agreement and reliability compared to the two-dimensional measurements for the assessment of VS growth. Small intracanalicular VS form an exception. When evaluating VS growth, the VS baseline characteristics should be considered, because standard deviation (%) strongly depends on VS size. The 1- or 2-mm difference commonly used to define the growth of VS in consecutive scans in two-dimensional measurements lies within the measurement error and should not direct clinical practice.
- Remark 6: The maximum diameter of the CPA portion is the simplest method, and it is appropriate to represent the tumor volume in unselected tumors. The maximum diameter or axis diameter with the internal auditory canal portion are better when only small tumors (<0.5 cm3), i.e., tumors with the maximum CPA≤1 cm.
growth that changed management strategies, values retained were 3 mm, 2.5, and 2 mm of VS growth per year in 4, 1, and 2 articles, respectively.

Although there is an overall low quality of the present studies, all highlight a significant VS growth >2 mm, and/or 1.2 cm³, and/or 20% change in volume, and/or the square of the product of the 2 orthogonal diameters.

Following the GRADE system, 29 articles were considered to have a “low” level of evidence for being observational studies. Furthermore, 4 observational studies were downgraded to “very low” evidence for possible confounding factors. Finally, the 2 meta-analysis and 6 good quality observational studies were graded as “moderate” evidence.

CONCLUSION
VS growth should be measured on contrast-enhanced T1 weighted images.

Although there is an overall low quality of the present studies, all highlight a significant VS growth >2 mm, and/or 1.2 cm³, and/or 20% change in volume, and/or the square of the product of the 2 orthogonal diameters. We suggest that VS growth should instead change management strategies when there is a 3-mm increase in the diameter on two consecutive MRI scans 1 year apart.

Remarks
Most of the available evidence for VS growth comes from retrospective case series. The follow-up period in these series is quite heterogeneous. The VS growth rate should be assessed by VS growth per year in further prospective designed studies.

Position EAONO
• There is no high-quality evidence of the definition of VS growth. Future studies should try to overcome the present limitations in the study design to provide VS growth rate per year.

• Nevertheless, the consistency of results across different studies allows for a “moderate” recommendation to consider a significant VS growth of >2 mm, and/or 1.2 cm³, 20% volume, with VS growth rate >3 mm/year as a sign of evolution requiring a change in the treatment strategy.

• The optimal method of measuring VS volumes continues to be debated.

• In literature, the most common method used clinically is to measure the maximum diameter of the tumor, sometimes excluding the dimensions of the intracanalicular component but often including the intracanalicular component.

• The mean growth rate for all tumors, when growing, varies between 1 and 2 mm/year (1.75±0.83 mm/year) and between 2 and 4 mm/year for only those that grow.

• There are various patterns of growth, and a tumor that grows may stop growing and vice versa. Nevertheless, the first years of observation may give a good estimate of the pattern of growth. Some cases can exhibit significant regression or exceptional growth.

• Clinicians should seek to instigate national tumor registries in their countries and a common data set to facilitate international cooperation.

• The 2-mm cut-off should be recommended to avoid the effect of MRI slice thickness and partial volume effects. Tumor shrinkage was defined as tumor-size reduction in any plane by at least 2 mm.

• VS growth rate >3 mm/year should be considered a sign of evolution requiring a change in the treatment strategy.

Peer-review: Externally peer-reviewed.

Acknowledgements: The authors thank Jacques Magnan, Franco Trabalzini, Miguel Aristegui, Per Caye Thomansen and Shak Saeed for their opinion, contribution and interaction with the working group on Vestibular Schwannoma.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Editor’s Note:
The EANO Project on guidelines of Otology and Neurotology was initiated by Franco Trabalzini and the Working Groups began working in 2011. Since then a considerable work has been issued to produce the first Consensus Documents.

The working Group on Vestibular Schwannoma have esteemed members from dedicated centers all over Europe. I wish to express my thanks to the working group leaders Miguel Aristegui and Jacques Magnan for their great effort as well as to all the other active members of the group.

Miguel Aristegui, Shakeel Saeed, Simon Lloyd, Per-Caye Thomansen and Jacques Magnan’s comments for this “Consensus Document” have been very much appreciated.

This study is very much respected by the Editorial of the Journal in this regard.

Prof. Dr. O. Nuri Ozgirgin
Editor in Chief

REFERENCES

