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BACKGROUND: Pneumatization of the mastoid process is variable and of significance to the operative surgeon. Surgical approaches to the 
temporal bone require an understanding of pneumatization and its implications for surgical access. This study aims to determine the feasibility 
of using deep learning convolutional neural network algorithms to classify pneumatization of the mastoid process.

METHODS: De-identified petrous temporal bone images were acquired from a tertiary hospital radiology picture archiving and communication 
system. A binary classification mode in the pretrained convolutional neural network was used to investigate the utility of convolutional neural 
networks in temporal bone imaging. False positive and negative images were reanalyzed by the investigators and qualitatively assessed to con-
sider reasons for inaccuracy.

RESULTS: The overall accuracy of the model was 0.954. At a probability threshold of 65%, the sensitivity of the model was 0.860 (95% CI 
0.783-0.934) and the specificity was 0.989 (95% CI 0.960-0.999). The positive predictive value was 0.973 (95% CI 0.904-0.993) and the negative 
predictive value was 0.935 (95% CI 0.901-0.965). The false positive rate was 0.006. The F1 number was 0.926 demonstrating a high accuracy 
for the model.

CONCLUSION: The temporal bone is a complex anatomical region of interest to otolaryngologists. Surgical planning requires high-resolution 
computed tomography scans, the interpretation of which can be augmented with machine learning. This initial study demonstrates the feasibil-
ity of utilizing machine learning algorithms to discriminate anatomical variation with a high degree of accuracy. It is hoped this will lead to further 
investigation regarding more complex anatomical structures in the temporal bone.
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INTRODUCTION
The mastoid process makes up part of the temporal bone, a pyramidal shaped bone of the skull base. One of the hallmarks of mas-
toid anatomy is variable pneumatization, the development of which progresses from the time of birth to around age 10.1 Surgical 
approaches to the temporal bone require an understanding of the significance of this pneumatization and its implications for surgi-
cal access.2,3 Degree of pneumatization may also be predictive of surgical success in middle ear surgery.4 Pneumatization is variable 
and while the mastoid antrum is uniformly present from 22 weeks of gestation, the remaining mastoid and temporal bone pneuma-
tizes variably in 3 phases to an average adult volume of 8 mL.5,6 In addition to the implications for surgical ease of access to the tem-
poral bone, the degree of pneumatization may also have implications on disease processes such as otitis media, mastoiditis, and 
cholesteatoma through its role in buffering the middle ear and mastoid air system. Sade and Fuchs7,8 found that pneumatization 
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less than 6 cm3 confers an 18 times higher risk of secretory otitis 
media and subsequent chronic otitis media compared to patients 
with normal volumes of pneumatization. The alternate view is an 
environmental theory arguing that the disease processes in early 
development lead to the arrest of pneumatization.5

Due to the importance of mastoid pneumatization, the degree of 
pneumatization is routinely reported in computed tomography (CT) 
scans of the temporal bone for diagnosis, prognosis, and surgical 
planning. The reporting process can be augmented with machine 
learning (ML) algorithms. Machine learning is a discipline of artificial 
intelligence that uses computers to make analyses based on pre-
programmed training, usually using structured data. Deep learning is 
a subset of ML, where complex analyses are made often on unstruc-
tured data such as images and videos using multi-layered “neural 
network” architectures which are modeled on the human visual cor-
tex and brain.9

While early ML models have been utilized for decades, advances in 
both hardware and software have allowed machine and deep learn-
ing to permeate into our technology and way of life.10 In computer 
vision, convolutional neural networks (CNNs) use iterative “kernels” 
or filters, a matrix of numbers that aim to detect features of an image 
such as edges and lines, to analyze a second matrix, the image itself, 
and are therefore well suited to the analysis of radiological images.10

Arguably, deep learning is part of the future of radiology,11 and 
already, several applications of algorithms to body parts such as the 
lung and prostate,12-16 have been described. Even in the head and 
neck, several studies in thyroid and head and neck oncology have 
utilized artificial intelligence to classify and identify radiological 
features such as on paranasal sinus CT scans17,18 and thyroid ultra-
sound.19-24 Deep learning algorithms have yet to be applied to dis-
criminate mastoid pneumatization or other anatomical variants in 
the temporal bones thus far in the reported literature. Determining 
anatomical variation in the temporal bone is a complex task even 
for specialist otolaryngologists and head and neck radiologists. This 
study aims to determine the feasibility of using deep learning CNN 
algorithms to classify pneumatization of the mastoid process.

METHODS
Institutional ethics approval was obtained from the Western Sydney 
Local Health District Ethics Committee (2021PID03049) and the 
study was conducted in line with the principles of the Declaration 
of Helsinki. 

De-identified retrospective petrous temporal bone cone-beam com-
puted tomography (CBCT) images were obtained at random from 
a tertiary hospital radiology picture archiving and communication 
system. Temporal bone images were obtained from a CBCT with 
the capability for fine slice image acquisition (0.3 mm). Axial slices 
at the level of the antrum, at the approximate level of the incudo-
malleal joint, in a bone window were chosen for this study. Scans 
were excluded if the patient had undergone previous temporal bone 
surgery.

Digital Imaging and Communications in Medicine (DICOM) images 
were exported in JPEG format and divided in half to extract left and 
right temporal bones from each patient’s CT scan. Where the scan 

did not align at the exact level of the incudomalleal joint on both 
sides, the level which best approximated this joint on at least 1 side 
was taken. The dataset was further augmented by flipping images 
left to right and vice versa, as described by Bloice et  al.25 to create 
4 images from each patient scan.

A board-certified otolaryngologist (ZH) and an otolaryngology resi-
dent (FC) independently divided the extracted images into a binary 
classification (pneumatized or sclerosed). The images were con-
sidered pneumatized if there was a well-developed air cell system 
around the mastoid antrum and sclerosed if there were minimal 
cells around the mastoid antrum. Further review was undertaken 
by a board-certified head and neck radiologist with agreement by 
consensus (ground truth). Images were divided into training and 
test sets in a 2:1 ratio, maintaining the proportion of sclerosed and 
pneumatized images. The distribution of partially and fully opacified 
mastoids was analyzed between the 2 groups using the chi-square 
test for homogeneity using MedCalc Statistical Software© (v20.022; 
Ostend, Belgium).

Microsoft Azure’s Custom Vision (Redmond, Washington, USA) plat-
form was utilized for the purposes of training and testing the algo-
rithm. Custom Vision is based on a pretrained CNN and uses transfer 
learning to perform image analysis on an unseen dataset. Custom 
Vision allows the application of ML algorithms to perform binary 
and multiclass classification tasks on custom datasets as small as 
50 images. For this experiment, the binary classification mode was 
utilized. Training images were uploaded to the platform and subse-
quently, the algorithm was trained on this image set using the 1-hour 
training mode. 

Performance metrics included precision, recall, and mean average 
precision based on the initial training set. The test set was subse-
quently manually uploaded onto the Custom Vision platform to test 
accuracy following training and class label probability recorded in 
MedCalc. The probability threshold >65% was chosen to represent 
positivity for the purposes of this study. This allowed the calculation 
of performance metrics including sensitivity, specificity, positive and 
negative predictive values, and F1 score. A receiver operating charac-
teristic curve was generated using MedCalc software using the meth-
odology of DeLong et al.26 to model the accuracy of the model. False 
positive and negative images were reanalyzed by the investigators 
and qualitatively assessed to consider reasons for inaccuracy. 

RESULTS
A total of 800 images were obtained from 200 patients. Sixteen 
images were excluded due to previous mastoidectomy. The final 
dataset contained 260 sclerosed temporal bones and 524 pneuma-
tized temporal bones. After division into sclerosed versus pneuma-
tized image sets, these sets were further divided randomly in a 2:1 
ratio into training and test sets such that the sclerosed set included 
174 training images and 86 test images and the pneumatized set 
included 348 training images and 176 test images (Tables 1 and 2). 
The chi-square test was applied to the training and test sets to com-
pare the homogeneity of partially and fully opacified mastoids in 
both the pneumatized and sclerosed cohorts. For the training set the 
chi-square statistic was 43.729 with a P-value < .00001 and for the 
test set the chi-square statistic was 29.212 with a P-value of <.00001 
indicating non-homogeneity between the 2 sets.
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The overall accuracy of the model was 0.954. At a probability thresh-
old of 65%, the sensitivity of the model was 0.860 (95% CI 0.783-
0.934) and the specificity was 0.989 (95% CI 0.960-0.999). The positive 
predictive value was 0.973 (95% CI 0.904-0.993) and the negative pre-
dictive value was 0.935 (95% CI 0.901-0.965). The false positive rate 
was 0.006. The F1 number was 0.926 demonstrating a high accuracy 
for the model. 

The receiver operator characteristic (ROC) curve with 95% CI is dem-
onstrated in Figure 1, with the area under the curve of 0.968 (95% 
CI 0.939-0.986; SE 0.0132) indicating a very good fit of the model for 
distinguishing sclerosed from pneumatized mastoid processes. This 
curve demonstrates the variance of sensitivity and specificity as the 
probability threshold is adjusted. 

Pneumatized Test Set
One hundred seventy-six images that were labeled “pneumatized” 
(ground truth) were tested following the initial training phase (exam-
ple in Figure 2). Seven of these images contained partially opacified 
mastoids, and none of the images contained fully opacified mastoids 
(Table 3). Of these images, 174 were correctly identified by the model 
(true positives). Only 2 images were identified incorrectly (false nega-
tives) by the algorithm as sclerosed in this set. These images were 

reviewed by the investigators. The reason for misclassification is likely 
the presence of sparse periantral cells which may have led the algo-
rithm to classify these images as sclerosed (Figure 3). Of the 2 false 
negative images in the pneumatized test set, 1 mastoid was partially 
opacified in the lateral epitympanum (see Figure 3). 

Sclerosed Test Set
Eighty-six images that were labeled “sclerosed” (ground truth) were 
tested following the initial training phase (example in Figure 4). 
Twelve of these images contained partially opacified mastoids, and 
10 of the images contained fully opacified mastoids (Table 3). Of 
these images, 12 images (false negatives) were categorized pneu-
matized by the algorithm and the remaining 74 were correctly cat-
egorized by the model (true positives). On review of false negative 
images, they were largely sclerosed but did have the presence of 
some periantral cells similar to the misclassification of the 2 images 
from the pneumatized test set (Figure 5). Of the 12 false negative 
images in the sclerosed test set 4 mastoids were partially opacified 
and none were fully opacified.

DISCUSSION
This is the first study utilizing deep learning techniques to classify 
pneumatized and sclerosed mastoids. The study demonstrates that 
computer vision has a high degree of accuracy (95.4%) in perform-
ing this binary classification task, with a moderate sample size of 
784  images. Microsoft estimates that for most classification tasks 

Table 1. Distribution of Dataset into Training and Test Sets

Training (%) Test (%) Total

Pneumatized 348 (66.4) 176 (33.6) 524

Sclerosed 174 (66.9) 86 (33.1) 260

Total 522 (66.5) 262 (33.5) 784

Table 2. Confusion Matrix Demonstrating Performance of the Model at 
Probability Threshold of 65% 

Mastoid Sclerosis
Ground Truth

Sclerosed (%) Pneumatized (%)  Total

Algorithm  Sclerosed 74 (97.4) 2 (2.6) 76

Pneumatized 12 (6.5) 174 (93.5) 186

 Total 86 176 262 

Figure  1. ROC curve for mastoid pneumatization model. ROC, receiver 
operator characteristic.

Figure 2. Example of an image from the pneumatized test set demonstrating 
a well-developed mastoid antrum and numerous and well aerated periantral 
cells. 

Table 3. Distribution of Partially and Fully Opacified Mastoids in Training 
and Test Sets

Pneumatized Sclerosed

Training Test Training Test

Partially opacified 9/348 
(2.6%)

7/176 
(4.0%)

13/174 
(7.5%)

12/86 
(14.0%)

Fully opacified 3/348 
(0.9%)

0/176  
(0%)

22/174 
(12.6%)

10/86 
(11.6%)

Non-opacified 336/348 
(96.5%)

169/176 
(96.0%)

139/174 
(79.9%)

64/86 
(74.4%)
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using the Custom Vision platform a sample size of 50 is adequate. 
However, algorithms do risk perpetuating biases.27 Researchers and 
developers need to consider where and how data is collected to aug-
ment, validate and test an algorithm, to prevent reinforcing biases. 
Larger datasets are more generalizable and avoid the problem of 
overfitting where the algorithm learns features intrinsic to the train-
ing dataset rather than features that may be more generalizable for 
real-world examples.28

The overall accuracy of the algorithm was 95.4%. This is consistent 
with other studies which have utilized ML algorithms for classifica-
tion tasks in the head and neck region such as concha bullosa (83%) 
(18), anterior ethmoidal artery (81%)17 and osteomeatal complex 
on paranasal sinus CT (85%).29 The specificity of the algorithm was 
higher than the sensitivity indicating the algorithm had greater 
certainty in the identification of pneumatized mastoids than those 

which are sclerosed. The likely reason for this is that although binary 
classification was performed, mastoid pneumatization, and sclero-
sis are not entirely binary categories. The mastoid antrum is always 
developed to a varying degree and the presence of periantral cells 
also demonstrates a wide degree of variability. Mastoids with a vary-
ing degree of pneumatization were more likely to be misclassified, 
with the false negatives from the sclerosed test set being mastoids 
with a large antrum and sparse periantral cells, whereas those cor-
rectly identified had a smaller antrum and minimal to no periantral 
cells. This was the basis for clinicians’ categorization as sclerosed 
whereas the algorithm may have classified according to the overall 
volume of non-bone density in the mastoid process. 

The difficulty in developing robust classification schemes for mas-
toid pneumatization is well reflected in the literature and a myriad 
of classification schemes are present, many ill-defined. These classi-
fication schemes include descriptions of the various cell tracts. One 
of the earliest descriptions of mastoid pneumatization was by Allam 
et al30 in 1969. They divided pneumatization into 3 regions—mastoid, 
petrous, and accessory tracts. The mastoid portion is divided by the 
petrosquamous fissure externally and Koerner’s septum internally 
from the petrous portion. The cell tracts of the petrous portion were 
further divided into the petrous apex and perilabyrinthine tracts. 
Finally, accessory tracts included zygomatic, squamous, occipital, 
and styloid. 

In addition to the various tracts described above, the degree of pneu-
matization has also been variably described. Some authors favor a 
3-tiered class ifica tion— scler otic,  diploic, and pneumatized, although 
the precise definitions with respect to the number of air cells pres-
ent and degree of pneumatization have not been well described. 
Virapongse et al5 utilized a 4-tiered system where the number of peri-
antral cells was counted—grades 1 to 4 from <10 cells to >50 cells. 
This system has not been widely adopted. Han et al1 utilized a system 
relating pneumatization and the presence of cells to the anterior, mid-
dle, and posterior aspects of the sigmoid sinus. Although these com-
plex descriptions of pneumatization exist, the authors felt a binary 
classification was appropriate as it is widely used in clinical practice, 
has the greatest surgical relevance in most procedures on the tempo-
ral bone, and is more amenable to an image classification algorithm.

Figure  3. Temporal bone image from pneumatized test set incorrectly 
labeled by the algorithm as sclerosed.

Figure 4. Example of an image from the sclerosed test set demonstrating a 
contracted mastoid antrum and sparse periantral cells.

Figure 5. Temporal bone image from sclerosed test set incorrectly labeled by 
the algorithm as pneumatized.
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For the purposes of this study, the axial slices analyzed were taken 
at the incudomalleal joint. The level of this joint has been previously 
used for pneumatization classification studies1 as this is the most sur-
gically relevant region of the mastoid being the level of the mastoid 
antrum and entry to the antrum and thereafter the epitympanum 
and middle ear in mastoid surgery. Additionally, pathologies such as 
cholesteatoma often occur here and, accordingly, this level is of sur-
gical relevance. Although other levels of the mastoid were not used 
in this study, it is anticipated that similar levels of performance would 
be obtained. 

On the basis of our simple binary classification, a high degree of 
accuracy was obtained demonstrating this model may be suitable for 
future investigation of more complex anatomical variations includ-
ing the presence/absence of dehiscence of critical structures, aber-
rant anatomy of the major vessels, and slope of the tegmen tympani/
mastoideum. The investigators intend to use the same model to test 
the hypothesis that artificial intelligence and computer vision may be 
harnessed to help surgeons identify important anatomical variants 
relevant to surgical access to the temporal bone and improve teach-
ing and surgical safety. 

When comparing the training and test groups with respect to the 
degree of opacification, there was a non-homogenous distribution 
of non-opacified, partially opacified, and fully opacified mastoids as 
evidenced by the chi-square metric. However, the investigators feel 
this is unlikely to have confounded the results significantly as both 
groups did include opacified mastoids and the vast majority of both 
sets were classified accurately (Table 4). Nevertheless, this is a limita-
tion of the methodology as this could potentially confound the abil-
ity of the CNN in correctly differentiating between pneumatized or 
sclerosed mastoids. In some CNN models, class attribution maps or 
“heat maps” can be generated to identify regions which the algo-
rithm is “seeing” to perform its classification task.12 In future papers 
this may increase confidence that classification is being performed 
based on the air cells themselves rather than another undefined fea-
ture of the image.

Although the algorithm has performed well in our data popula-
tion, external validation of this algorithm has not yet been tested 
for specific demographic groups. Temporal bone anatomy can differ 
with the patient’s age, race, and gender. A limitation of our study is 
that we did not gather demographic information, and therefore it 
remains unclear if differing demographics would affect the validity 
of the algorithm. This is also an opportunity for future application, 

where a refined algorithm could be developed for specific groups 
(e.g. pediatrics). Additionally, future experiments the investigators 
seek to conduct will include performing more complex multitask 
classification, object detection, and segmentation. 

Potential applications of this technology include simplification of 
mundane lower-level tasks for reporting radiologists allowing them 
to dedicate time to more complex interpretation. Additionally, for 
surgeons, identification and classification of variation in mastoids 
including pneumatization, dehiscence of critical structures, aber-
rant anatomy of major vessels, low-lying tegmen tympani, and mas-
toideum will improve the teaching of junior surgeons by directing 
attention to these critical variants. It is possible, if intraoperative navi-
gation takes increasing prominence to augment operative otology, 
ML, and computer vision can be incorporated to direct the surgeon’s 
attention to these structures and variations, thus improving opera-
tive safety. 

CONCLUSION
The temporal bone is a complex anatomical region of interest to oto-
laryngologists, and mastoid pneumatization has significant implica-
tions on pathology and surgical access. Surgical planning requires 
high-resolution CT scans, the interpretation of which can be aug-
mented with ML. This initial study demonstrates the feasibility of uti-
lizing ML algorithms to discriminate temporal bone pneumatization 
with a high degree of accuracy—a sensitivity of 0.860 and a specific-
ity of 0.989. It is hoped this will lead to further investigation regard-
ing more complex anatomical structures in the temporal bone.
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