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BACKGROUND: Petrous temporal bone cone-beam computed tomography scans help aid diagnosis and accurate identification of key operative 
landmarks in temporal bone and mastoid surgery. Our primary objective was to determine the accuracy of using a deep learning convolutional 
neural network algorithm to augment identification of structures on petrous temporal bone cone-beam computed tomography. Our secondary 
objective was to compare the accuracy of convolutional neural network structure identification when trained by a senior versus junior clinician.

METHODS: A total of 129 petrous temporal bone cone-beam computed tomography scans were obtained from an Australian public tertiary 
hospital. Key intraoperative landmarks were labeled in 68 scans using bounding boxes on axial and coronal slices at the level of the malleoincudal 
joint by an otolaryngology registrar and board-certified otolaryngologist. Automated structure identification was performed on axial and coronal 
slices of the remaining 61 scans using a convolutional neural network (Microsoft Custom Vision) trained using the labeled dataset. Convolutional 
neural network structure identification accuracy was manually verified by an otolaryngologist, and accuracy when trained by the registrar and 
otolaryngologist labeled datasets respectively was compared.

RESULTS: The convolutional neural network was able to perform automated structure identification in petrous temporal bone cone-beam com-
puted tomography scans with a high degree of accuracy in both axial (0.958) and coronal (0.924) slices (P < .001). Convolutional neural network 
accuracy was proportionate to the seniority of the training clinician in structures with features more difficult to distinguish on single slices such 
as the cochlea, vestibule, and carotid canal.

CONCLUSION: Convolutional neural networks can perform automated structure identification in petrous temporal bone cone-beam computed 
tomography scans with a high degree of accuracy, with the performance being proportionate to the seniority of the training clinician. Training of 
the convolutional neural network by the most senior clinician is desirable to maximize the accuracy of the results.
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INTRODUCTION
Surgery of the temporal bone and mastoid is often required for the clearance of chronic ear diseases such as chronic suppurative 
otitis media or cholesteatoma, for complications of acute mastoiditis and prior to implanting hearing devices such as cochlear 
implants.1 Between July 2017 and June 2022, 4356 patients underwent mastoidectomy in Australia).2 Recognizing intraoperative 
landmarks such as the mastoid air cells, sigmoid sinus, tegmen, facial nerve, and ossicular chain is critical to avoiding complications 
of surgery such as hearing loss, vertigo, facial paralysis, or CSF leak.1,3-5 As a result, accurate identification of these landmarks is a 
crucial requirement for radiologists and otolaryngologists.3,6
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Petrous temporal bone (PTB) cone-beam computed tomography 
(CBCT) is performed to aid pre-operative diagnosis and identification 
of landmarks with 262 364 PTB CBCT scans performed in Australia 
between July 2017 and June 2022.2 Conventional interpretation of 
CT imaging is subject to several human factors such as clinical expe-
rience, fatigue, and time pressures.7 Artificial intelligence (AI) may 
augment pre-operative identification by automated labeling and 
identification of important anatomical structures and landmarks on 
CT imaging in a consistent and identifiable manner and be utilized as 
a valuable teaching instrument. 

There is an expanding interest in utilizing deep learning in radiologi-
cal analysis given the data-centric nature of radiologic imaging. Deep 
learning may facilitate identification of these structures and has pre-
viously been utilized for structure and region identification on chest 
x-rays.8 Convolutional neural networks (CNNs) is a promising meth-
odological technique which can be applied to a range of computer 
vision tasks. Recent advances in hardware and software in the past 
2 to 3 decades have expanded the role of CNNs which have been 
applied increasingly to real-world computer-vision problems, includ-
ing in medical imaging.9 The utility of deep learning in temporal bone 
imaging to date is sparse, although applications in other domains 
of radiology such as chest x-rays (CXR) and CT are more well devel-
oped.10-14 Radiology studies in CNN typically approach image analy-
sis as a classification-based problem,6 although object detection by 
bounding boxes is also a well-established technique, popularized 
in facial detection and self-driving cars.15,16 In object detection by 
bounding boxes, a training data set “trains” the algorithm to localize 
pre-labeled named objects, to which a class label is attached, within 
the overall image. Subsequently, a test set is presented and the algo-
rithm is challenged to localize the object in question in previously 
“unseen” images.17 As opposed to the binary approach of classifica-
tion-based computer vision tasks, bounding boxes have increased 
complexity. They seek to not only identify if a structure is present in 
an image but also where in the image it is located.18 Bounding boxes 
have been used in radiology to identify anatomy and pathology on 
CXR14 and have proposed uses elsewhere such as identifying brain 
tumors/edema on MRI and identifying fractures on pelvic and wrist 
x-rays.8,19,20

Structure identification on temporal bone imaging is an area of pau-
city in the AI literature21 and hence may be a good test of the ability 
of CNNs in identifying fine anatomical structures within a confined 
space. The aim of this study is to determine the accuracy of using a 
deep-learning CNN algorithm to identify critical structures in tempo-
ral bone CT imaging through object detection with bounding boxes. 
A secondary aim is to compare the accuracy of the CNN in identifying 
these structures when trained separately by an otolaryngology regis-
trar as compared to a board-certified otolaryngologist.

MATERIAL AND METHODS
Institutional ethics approval was obtained from the Western Sydney 
Local Health District Ethics Committe (2021/PID03049), and the study 
was conducted in accordance with the principles of the Declaration 
of Helsinki. Verbal informed consent was obtained from the patients 
who agreed to take part in the study. 

De-identified retrospective PTB CBCT scans were obtained from a 
large Australian public tertiary hospital radiology Picture Archiving 

and Communication System (PACS), with a total of 129 scans 
extracted. Petrous temporal bone cone-beam computed tomogra-
phy scans were obtained from a scanner with capability for fine slice 
image acquisition (0.3 mm). Axial and coronal slices at the level of 
the malleoincudal joint were chosen for the purposes of this study, 
as these are the views an otolaryngologist would look through pre-
operatively to identify important landmarks. Exclusion criteria were 
previous temporal bone surgery based upon radiological appear-
ance. Clinical information was not collected.

Images were divided into training and test sets. Azure’s Custom 
Vision (Microsoft Corporation, Redmond, Washington, USA) platform 
was utilized to draw bounding boxes around the relevant structures 
using the test set where the structures were present. Custom Vision 
allows application of machine learning (ML) algorithms to perform 
classification tasks as well as identification tasks using bounding 
boxes on custom datasets as small as 50 images.

Bounding box mode was utilized on 68 axial and 66 coronal train-
ing images. Images were interpreted in Joint Photographic Experts 
Group (JPEG) format in their original resolution on high-resolution 
computer monitors with bounding boxes placed around structures 
by a board-certified otolaryngologist (ZH) and independently by an 
otolaryngology registrar (FC). Important temporal bone structures 
of interest to an operating surgeon were chosen for identification. 
On axial imaging, they were mastoid air cells, sigmoid sinus, inter-
nal acoustic meatus, facial nerve, ossicles, cochlea, and the vestibule. 
On coronal imaging, they were mastoid air cells, internal acoustic 
meatus, facial nerve, cochlea, the vestibule, carotid canal, ossicles, 
semi-circular canal, and tegmen. Training images were uploaded to 
the platform and subsequently the algorithm was trained on this 
image set using the 1-hour training mode. 

A second unseen test set composed of 61 axial and 61 coronal 
sequences was uploaded to the Custom Vision platform and the 
trained algorithm was tested in automated structure identification 
on the training performed by both the otolaryngology registrar and 
board-certified otolaryngologist (test 2). Algorithm performance in 
correctly identifying anatomical structures of interest was recorded. 
Responses were recorded, including the number of instances the 
structure of interest was identified manually in the test set (ground 
truth) and the number of instances the algorithm correctly iden-
tified the structure of interest when trained on the training set 
labeled by the otolaryngology registrar (test 1) and otolaryngolo-
gist (test 2). 

Statistical analysis was performed using MedCalc 2011 (Ostend, 
Belgium). Sensitivity and specificity were calculated with 95% con-
fidence intervals. Receiver-operating characteristic (ROC) curves 
were generated with area under the curve calculations and 95% con-
fidence intervals based on the methodology described by DeLong 
et al.22

RESULTS
The final dataset included 129 axial images and 127 coronal images. 
In 2 CT series, an adequate coronal slice where all the necessary struc-
tures were visible could not be identified. The axial images were split 
into 68 training images and 61 test images and the coronal images 
were divided into 66 training images and 61 test images. 
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Axial Imaging

Mastoid Air Cells
Mastoid air cells were present in all 61 test images. The mastoid air 
cells were identified reliably on the test set in 100% (61/61) of images 
when the dataset was trained based on labeling both by the oto-
laryngology registrar (train 1) as well as the otolaryngologist (train 
2). One image had a pneumatized mastoid apex, and this was also 
labeled by the algorithm as “mastoid air cells” (Figure 1). 

Sigmoid Sinus
The sigmoid sinus was present in 57 test images. In train 1, it was 
identified accurately in 55/57 (96.49%) images and in all 57 (100%) 
images in train 2.

Internal Acoustic Meatus
The internal acoustic meatus was present in 60 test images. In train 
1, it was identified accurately in 53/60 (88.33%) images and in all 60 
(100%) images in train 2.

Facial Nerve
The facial nerve was present in 52 test images. In train 1, it was identi-
fied accurately in 39/52 (75%) images and in 51/52 (98.08%) images 
in train 2.

Cochlea
The cochlea was present in 54 test images. In train 1, it was identified 
accurately in 33/54 (61.11%) images and in 53/54 (98.15%) images 
in train 2.

Vestibule
The vestibule was present in 55 test images. In train 1, it was iden-
tified accurately in 23/54 (41.82%) images and in 53/54 (96.36%) 
images in train 2.

Total Structures Identified
A total of 400 structures were present in the test set (see Table 1 – 
ground truth) and a total of 27 structures were not present across 
the test set images, producing a total of 427 identification tasks for 
the algorithm (Figure 2). Receiver operating characteristic curve was 
generated with area under the curve of 0.851 (95% CI, 0.813-0.883) 
when the algorithm was trained by the registrar compared to 0.958 
(95% CI, 0.934-0.975) when trained by an ENT surgeon (see Figure 3). 
Sensitivity was 81.25 (95% CI, 77.1-85.0) and specificity was 88.89 
(95% CI, 70.8-97.6) when trained by the registrar and 99.00 (95% CI, 
97.5-99.7), and 92.59 (95% CI, 75.7-99.1), respectively, when trained 
by the surgeon.

Coronal Imaging

Mastoid Air Cells
The mastoid air cells were present in 61 test images. In train 1, it was 
identified accurately in all 61 (100%) images in train 1 and train 2.

Internal Acoustic Meatus
The internal acoustic meatus was present in 61 test images. In train 
1, it was identified accurately in all 61 (100%) images in train 1 and 
train 2.

Facial Nerve
The facial nerve was present in 61 test images. In train 1, it was identi-
fied accurately in all 61 (100%) images in train 1 and train 2.

Cochlea
The cochlea was present in 61 test images. In train 1, it was identified 
accurately in all 61 (100%) images in train 1 and train 2.

Vestibule
The vestibule was present in 61 test images. In train 1, it was identi-
fied accurately in all 61 (100%) images in train 1 and train 2.

Carotid Canal
The carotid canal was present in 60 test images. In train 1 it was 
identified accurately in 52/60 (86.67%) images and in 55/60 (91.67%) 
images in train 2.

Figure 1. Pneumatized petrous apex misclassified as mastoid air cells.

Table 1. Ground Truth and Percentage Accuracy for Anatomical Landmarks in Axial CT

Anatomical Structure

Mastoid Air Cells Sigmoid Sinus IAM Facial Nerve Ossicles Cochlea Vestibule

Ground truth 61 57 60 52 61 54 55

ENT registrar 61 55 53 39 61 33 23

CNN train 1 (%) 100.00 96.49 88.33 75.00 100.00 61.11 41.82

ENT surgeon 61 57 60 51 61 53 53

CNN train 2 (%) 100.00 100.00 100.00 98.08 100.00 98.15 96.36

CNN, convolutional neural network.
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Ossicles
The ossicles were present in 61 test images. In train 1, it was identified 
accurately in all 61 (100%) images in train 1 and train 2.

Semi-circular Canal
The semi-circular canal was present in 61 test images. In train 1, it 
was identified accurately in all 61 (100%) images in train 1 and train 2.

Tegmen
The tegmen was present in 61 test images. In train 1, it was identified 
accurately in all 61 (100%) images in train 1 and train 2.

Total Structures Identified
A total of 548 structures were present in the test set (see Table 2 – 
ground truth) and 1 structure (carotid canal not clearly seen on 1 

Figure 2. Labeled structures on axial CT imaging. CT, computed tomography.

Figure 3. Receiver operator curve (ROC) for axial CT training by ENT registrar (left) and ENT surgeon (right). CT, computed tomography.
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image) was absent across the test set, producing a total of 549 iden-
tification tasks for the algorithm. Receiver operating characteristic 
curve was generated with area under the curve of 0.907 (95% CI, 
0.879-0.930) when the algorithm was trained by the registrar com-
pared to 0.924 (95% CI, 0.899-0.945) when trained by an ENT surgeon 
(see Figure 4). Sensitivity was 97.99 (95% CI, 96.4-99.0) and specificity 
83.33 (95% CI, 35.9-99.6), respectively, when trained by the registrar; 
sensitivity was 99.09 (95% CI, 97.9-99.7) and specificity was 85.71 
(95% CI, 42.1-99.6) when trained by the surgeon.

DISCUSSION
This study demonstrates that CNNs can perform structure identifica-
tion in temporal bone imaging with a high degree of accuracy with 
a sample size as little as 60 images in both axial and coronal planes. 
Receiver operating characteristic curves achieved up to 0.958 on 
axial and 0.924 on coronal in the test 2 testing set, indicating excel-
lent diagnostic accuracy of the testing model, with statistically sig-
nificant P value of <.001 for both curves. Sensitivity and specificity 
were similarly high for both axial and coronal test sets.

The CNN was trained on structures in this study which are of rele-
vance to the operating surgeon and are paramount to safe mastoid 
surgery. Simple structures such as the mastoid air cells and ossicles 
were identified with a high degree of accuracy. In one instance, a 
pneumatized petrous apex was incorrectly identified by the algo-
rithm as mastoid air cells (Figure 1). This reassuringly indicates that 
the algorithm is identifying cells based on their appearance rather 
than other features such as location or by coincidence. The ossicles 
were also identified consistently by the algorithm, namely at the 
level of the malleoincudal joint. Fine structures such as the tympanic 
portion of the facial nerve (Figure 5) as well as the superior semi-cir-
cular canal (Figure 6) are also identified with a high degree of accu-
racy including in coronal slices where the structure may only be a 
few pixels wide. Although it is unclear whether it is the size, shape, 
or position of the structure which allows the algorithm to identify 
the structure, it is postulated that this may be a combination of these 
factors as observed in Figure 5 where the facial nerve is correctly 
identified based potentially on its ovoid shape, position, and den-
sity, whereas other similar structures such as turns of the cochlea are 

Table 2. Ground Truth and Percentage Accuracy for Anatomical Landmarks in Coronal CT

Anatomical Structure

Mastoid Air Cells
Internal Acoustic 

Meatus
Facial Nerve Cochlea Vestibule

Carotid 
Canal

Ossicles
Semi-circular 

Canal
Tegmen

Ground truth 61 61 61 61 61 60 61 61 61

ENT registrar 61 61 61 61 58 52 61 61 61

Train 1 (%) 100.00 100.00 100.00 100.00 95.08 86.67 100.00 100.00 100.00

ENT surgeon 61 61 61 61 61 55 61 61 61

Train 2 (%) 100.00 100.00 100.00 100.00 100.00 91.67 100.00 100.00 100.00

CT, computed tomography.

Figure 4. Receiver operator curve (ROC) for coronal CT training by ENT registrar (left) and ENT surgeon (right). CT, computed tomography.



Hasan et al. Deep Learning Algorithms to Identify Anatomical Landmarks on Computed Tomography Images

365

correctly not assigned the same label. Position may be an additional 
factor as observed in Figure 6 where an incomplete superior canal 
limb is still correctly identified based on its expected position. One 
common concern surrounding CNNs is that the method of deriving 
conclusions is a “black box,” wherein the convolutions prior to the 
final output are not able to be examined.23 Class attribution maps 
have been utilized in other studies for example in lung nodule detec-
tion which can increase confidence in how the structure is being 
identified as belonging to the correct class.24 Although beyond the 
scope of the current study, this technique poses an avenue of future 
research in temporal bone imaging and may increase confidence 
that the algorithm is identifying structures correctly rather than by 
chance, promoting confidence in future clinical applications.

Additionally, CNN training is improved proportionately to the 
expertise of the training clinician. The algorithm’s performance was 
weaker when trained by a less senior clinician (train 1), in particular 
with features that may be difficult to identify clearly on single axial 
CT images such as the cochlea or the vestibule on axial imaging and 

the carotid canal and vestibule in the skull base on coronal imaging. 
When trained by a board-certified otolaryngologist, the accuracy of 
CNNs in structure identification of temporal bone imaging is high, 
approaching 100% for most structures. In our study, structure iden-
tification in coronal CT was 100% in 6 of 7 structures for train 2 (ENT 
consultant), compared to 100% in 5 of 7 structures in train 1. Similarly, 
although overall accuracy was lower in axial CT for most structures, 
there was a higher accuracy for train 2. 

The greatest difficulty in automated structure identification was 
with the carotid canal especially where the dome of the canal was 
not well defined and identification was not performed by the algo-
rithm or where other canals in the base of the skull such as the hypo-
glossal canal were incorrectly labeled as the carotid canal. In a few 
instances, the canal was more widely labeled than the structure was 
present and although correctly labeled the precision of labeling was 
not as tight as when trained by the less senior clinician (n = 52/60 
images, 86.67%), compared to a more senior clinician (n = 55/60, 
91.67%).

One limitation of this study is the limited number of frames per 
patient incorporated into the training and test sets. In our model, 
only one axial and coronal image from each patient wasutilized, 
forming a 2D sample. In clinical practice, CT scans may be scrutinized 
through several slices to form a 3D image for the observer. Training 
the algorithm on entire CT sequences to pick out relevant slices and 
label structures and pathology is a difficult task for the CNN model 
used. With future developments in CNN technology, the ultimate aim 
would be to produce this 3D-based CNN model, which is most rel-
evant to clinical practice. This study explored the use of a pre-exist-
ing CNN for classifying image datasets, which limited our ability to 
introduce a validation set for hyperparameter optimization. Future 
studies using customizable CNN technology could introduce a vali-
dation set to potentially further optimize the accuracy of structure 
identification.

Additionally, the malleoincudal joint was used to select the frames 
for training and testing the CNN model, as it is the level at which most 
of these structures are present. It is unclear how the algorithm would 
perform with anatomical variation such as ossicular abnormalities or 
whether finer anatomical detail can be discriminated such as identi-
fying individual ossicles. Temporal bone images with post-operative 
change as well as significant pathology (other than mastoids with 
effusions or sclerosis) were not included as a uniform test and train-
ing set was required for this index CNN on temporal bone structure 
identification. Future studies may be able to further investigate how 
this model performs when images with pathology or post-operative 
changes are included. 

Another limitation of structure identification by bounding box is the 
requirement to constrain 3D and irregular nature of structures into 
rectangular boxes. While automated segmentation of structures can 
be performed with ML, these processes are semi-automated, time-
consuming, and may require manual refinement. Convolutional 
neural networks segmentation has been performed for larger, more 
gross anatomical structures such as whole-body adipose tissue25 and 
complicated anatomical structures in the maxillofacial complex.26 
Segmentation utilizing CNNs of fine temporal bone anatomy is wor-
thy of investigation and may optimize temporal bone surgery. 

Figure 5. Tympanic segment of facial nerve identification by CNN model in 
test set. CNN, convolutional neural network.

Figure 6. Lateral semi-circular canal identification by CNN model in test set. 
CNN, convolutional neural network.
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Clinically relevant usage of AI is increasingly prominent in the medi-
cal sphere. Of AI applications approved for clinical use by the FDA, 
radiology-based applications are enjoying the highest quantity of 
approved software devices.27 Areas of utility in the broader medical 
landscape include radiological identification, augmentation of sur-
gical instrumentation, and real-time identification of intraoperative 
structures.27 Although wider usage in otolaryngology is still devel-
oping,21 image-navigated systems in particular is an avenue AI may 
augment. 

The use of CNNs can also be used to increase efficiency, and there-
fore, better utilization of the workforce in radiology practice.28 
Similarly, preparative planning of mastoid surgery such as cochlear 
implantation requires cognitive load and time for identification of 
relevant structures for planning of the surgical dissection. With 
the use of CNNs, this cognitive load can be reduced and efficiency 
improved, allowing the surgeon to focus on other tasks. The use of 
AI may have the capacity to enhance medical education,29 and in this 
setting, the use of AI can be introduced in the education of trainee 
otolaryngologists and trainee radiologists as well as non-specialty 
services in the identification of important temporal bone structures, 
either in isolation or in relation to a disease process. In the future, 
the use of AI temporal bone imaging in identifying pathology such 
as ossicular chain erosion of cholesteatoma, especially when com-
bined with AI technology used for video otoscopes,30 may render 
itself a useful tool in teleradiology and telehealth medicine. Given 
the accuracy of identifying structures such as the facial nerve, CNNs 
may help in differentiating pathological dilemmas on temporal bone 
CT, for example, differentiating an early-stage glomus tympanicum 
from a facial nerve schwannoma at the tympanic segment on coro-
nal slices.31

Robotic mastoidectomy is increasing in popularity. Phantom and 
cadaver studies have been performed with the view of preparing the 
mastoid bed for more advanced otologic surgery or for more direct 
access to the round window with image-guided techniques.32,33 
Currently, preliminary investigations in using CNNs for mastoidec-
tomy in recognizing surgeon movements and intraoperative land-
marks have been successful.17,34 The authors anticipate that such 
applications will only increase as technology and expertise becomes 
more widespread. 

Artificial intelligence is an exciting technology that has the potential 
to significantly change clinical practice including in structure identifi-
cation in otologic radiology. This study demonstrates CNNs can have 
a high degree of accuracy at identifying structures, with the perfor-
mance correlating with the accuracy of the data labeling during the 
training phase. This suggests the seniority of the training clinician is 
paramount to ensuring the accuracy of the results. Further investiga-
tion would be desirable to investigate the accuracy of identification 
of more complex structures such as individual ossicles as well as in 
other radiological planes.
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